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Abstract

The first steps in developing a methodology for spacecraft control-structure interaction

(CSI) optimization are identification and classification of anticipated missions, and the develop-

ment of tractable mathematical modeIs in each mission class. A mathematical model of a generic

h_rge flexible space platform (LFSP) with multiple, independently pointed rigid payloads (repre-

sentative of "Class II" CSI missions) is considered. The objective here is not to develop a general

purpose numerical simulation, but rather to develop an analytically tractable mathematical model

of such composite systems. The equations of motion for a single payload case are derived, and

are linearized about zero steady-state. The resulting model is then extended to include multiple

rigid payloads, yielding the desired analytical form. The mathematical models developed clearly

show the internal inertial/elastic couplings, and are therefore suitable for analytical and numerical

studies. A simple decentralized control law is proposed for fine pointing the payloads and LFSP

attitude control, and simulation results are presented for an example problem. The decentralized

controller is shown to be adequate for the example problem chosen, but does not, in general,

guarantee stability. A centralized dissipative controller is then proposed, requiring a symmetric

form of the composite system equations. Such a controller guarantees robust closed-loop stability

despite unmodeled elastic dynamics and parameter uncertainties.

Outline
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CSI Mission Classification

Anticipated missions involving control-structure interaction (CSI) can be broadly divided

into four classes. Class I missions are those which require fine-pointing of the overall spacecraft,

as well as vibration suppression. There are no articulated substructures, and because of small

elastic and rigid-body motion, the modeling and control problem is essentially linear. There may,

however, be actuator and sensor nonlinearities. Examples of this mission class include large space

antenna concepts such as the hoop-column and wrap-rib antennas. The controller must satisfy

the performance specifications, which include fine-pointing (rigid plus flexible rotational motion),

reflector surface distortion, and defocus errors caused by feed and base elastic motion. The control

system must be capable of performing in the presence of significant elastic motion.

• Class I : Single-Body Flexible Spacecraft (Linear)

- fine-pointing and vibration suppression

- surface shape distortion and defocus errors

hoop-colunm antenna concept wrap-rib antenna concept
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CSI Mission Classification (cont.)

Class II missions represent an extension of Class I missions with articulated payloads

mounted on the flexible spacecraft. This important class of missions includes many types of

low-earth and geosynchronous platforms. The composite system consists of a large flexible space

platform (LFSP) to which a nmnber of rigid or elastic appendages are mounted. The objectives of

the controller are precision attitude control of the spacecraft , fine-pointing of each of its payloads,

and v_ratlon suppression' The problem is still linear, but the elastic and rigid-body motions

between bodies are coupled.

• Class II : Flexible Spacecraft with Articulated Appendages (Linear)

- includes rigid and elastic appendages (payloads)

- fine-pointing of all rigid and elastic components

- vibration suppression to improve payload performance

_=

........ |

Earth Observation System (EOS) geosynchronous platform |
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CSI Mission Classification (cont.)

Class III and IV missions are essentially the nonlinear counterparts to the Class I and II

missions previously discussed. Class III missions will require large angle manuevers of the entire

structure (without articulated appendages) while simultaneously minimizing the effects of elastic

motion induced by nonlinear internal couplings and external disturbances. Although this problem

has been studied numerically for specific flexible spacecraft, generic models do not exist.

Class IV missions have the inherent difficulty of the nonlinear Class III problems, but in-

clude the additional complexity of the articulated appendages of their linear Class II counterparts.

Such missions may require large-angle maneuvering of the flexible structure while simultaneously

and independently pointing various payloads to their own respective targets in the presence of

elastic motion. There is rigid/elastic coupling between all of the various components. Further-

more, payloads may be repositioned, or the spacecraft reconflgured by commanded motions of

the various appendages. Examples of this mission class include LFSPs with articulated payloads

and robotic arms allowing translational degrees of freedom.

The purpose of this paper is to develop a generic mathematical model and control laws

for an LFSP with multiple articulated payloads representative of Class II missions suited to CSI

optimization.

• Class III : Single-Body Flexible Spacecraft (Nonlinear)

- Precision large angle maneuvers for retargeting or tracking

- Vibration suppression during maneuvers

• Class IV : Fle.,dble Spacecraft with Articulated Appendages (Nonlinear)

- Large angle rotational motion of spacecraft and appendages

- Robotic manipulators allowing spacecraft reconfiguration
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Mathematical Model for LFSP/Single Payload

In developing the equations of motion, the single payload composite system will first.

be described in terms of its various coordinate systems, position vectors, etc. The equations of

motion for each component comprising the composite system, including LFSP rigid and elastic

motion as well as payload rigid-body motlon, will then be presented. By removing the constraint

force between the LFSP and payload, these equations will then be coupled, and presented in

matrix form. This generic model will then be extended to the multi-payload case.

A large flexible central body with a single attached articulated rigid payload is consid-

ered first. The mass/inertia properties of both bodies are assumed known. The modal solution

(frequencies and displacement vectors) for n modes of the flexible body (LFSP) is also assumed

known. This modal solution is usually obtained using finite element codes such as NASTRAN or

EALI wherein the effects of the payloads are taken into account by representing them as point

masses and inertias on the LFSP model. The present analysis requires the values of LFSP mode

shapes and mode slopes at the points of application of forces and torques, respectively. Both are

required at the payload attachment point. The attitude control system for the LFSP is assumed

to utilize reaction control system (Rcs) thrusters, and control moment gyro (CMG) torques. The

payload pointing mechanism is idealized as a three-axis point torque acting at the attachment

gimbal. The objective is to control the payload line-of-sight and LFSP attitude in the presence
of elastic motion.

Overall Configuration

• LFSP with single rigid payload

• Control objectives:

- attitude control of LFSP

- fine-pointing of payload

• Data required for model

- payload and LFSP masses and inertias

- modal frequencies

- mode shapesforforces(e.g.:RCS thrusters)

- mode slopesformomcuts (e.g.:CMG moments)

_ t t / / _'_'_ Payload

Large Flexible Space _ _ !

Platform (LFSP)

FRCS FRCS

Line-ofiSight
(LOS)

m, r,
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Coordinate Systems

The LFSP has two coordinate systems associated with it. One, designated the 6-system,

is fixed to the nominal center of mass (CM), and in conjunction with the nominally zero Euler

angles ($o, 0o, _bo), describes the rigid-body orientation. The other coordinate system, designated

the _-system, is fixed to the payload attach point ("point P") on the LFSP, thus rotating and

translating with the rigid and elastic LFSP motion at that point. This system is nominally parallel

to the 6-system axes. The orientation of the elastic axis system(_-system) with respect to the

6-system axes is described by Euler angles ($,, 0,, _,) (i.e., the rotational elastic displacements),

which are nominally zero. The origin of the LFSP 6-system is located in the reference inertial

coordinate system (denoted the fi-system), by the position vector R,o = Xfil + Yfi2 + Zfi3. The

payload attachment point P for the undeformed spacecraft is located from the LFSP CM, the

6-system origin, by position vector Rop = Xp61 + yp62 + Zp63.

The rigid payload is described by a body-fixed IS-system originating from the attachment

point, but fixed to the payload. The 6- and 0-system origins are coincident. Orientation with

respect to the elastic axes is described by Euler angles (_bp, 0p, _p). These are the payload pointing

mechanism "timbal angles". The desired nominal orientation is defined by user-specified gimbal

angles. Thus the angular orientation of the payload may be determined from the orientation of

the 0-system with respect to the _-system; the 6-system with respect to the 5-system (due to

elastic deformation); and the orientation in inertial space of the 6-system. Expressing a vector

in terms of components in the various coordinate systems requires transformations using a 1-2-3

Euler sequence of rotations. The angular velocity vectors (body rates) of the various coordinate

frames are COo, we, and cop for the LFSP rigid frame, LFSP elastic frame, and the payload frame,

respectively. The body rates must be transformed into Euler rates prior to linearization.

• inertial reference: fi-system

• LFSP (rigid) body axes: 6-system

• elastic system at payload attach pt.: _-system /. 0s 0;
/ LOS

• payload axes at attach pt.: 15-system ""
_3

• payload axes at CM: 15"-system 5_ lh P"
10p

,., t__ E

IL, p 1_2

6_ 53

fi2 51

5*
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Nonlinear Model

The nonlinear equations of motion for the composite system are developed next. The

bodies are each assumed to have constant mass and mass distribution, and to possess only rota-

tional freedom with respect to each other. All terms in the equations represent inertial quantities

which are to be expressed in the 6-system, nominally parallel to the inertial frame. It should

,, d ,, denotes differentiation with respect to the inertial frame, and so angularbe noted that d-_

velocity cross-products appear, whereas an overdot "'" indicates a local time derivative inside a

particular frame. Appropriate coordinate transformations in terms of Euler angles, using a 1-2-3

sequence, are required.

First consider the LFSP equations of motion. Beginning with the translational equation

of motion, writing Newton's law gives equation (1). Here mo is the LFSP mass, Fp is the internM

constraint (reaction) force exerted on the LFSP by the payload, and there are nF external forces

Foi acting on the body (e.g., RCS thrusters). .....

Next the nonlinear rotational equation of motion of the LFSP is given by equation (2).

Io is the LFSP inertia matrix about the CM, Tp is the pointing system reaction torque, and

there are nM moments Moi acting on the LFSP (e.g., CMG moments). The position vector

Rop - XpOl + ypO2 + zp6a locates the payload attachment point, and the position vector rol =

xoiol + yoio2 + ZoiOs locates the i th external force Fol acting on the LFSP. Here the "prime"

t indicates the (3 × 3) matrix cross-product form.notation with Rtop and roi

• LFSP translation:

LFSP Eqns. of Motion

• LFSP rotation:

Io_'o+ Wo x lowo= -Rop x Fp -

nF

mo_t,o = -Fp + E F,i
i=l

Tp+ZMoi+Eroi xFol
i=1 i=I

o
Cdo j( jS

`/

. ! o/ X

Fo!

fh

_ 62

(1)

(2)
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Nonlinear Model (cont.)

The LFSP elastic motion is assumed to be decoupled from the LFSP rigid-body motion

(valid for small motion), so that inertial/elastic coupling terms arise from payload interactions

with the platform at the attachment point. Thus the elastic motion of the LFSP may be de-

scribed by equation (3), the modal equation of motion. The (n x 1) vector q contains the modal

coordinates, where n is the number of modes used to describe the elastic motion. The modal

coordinates and their corresponding time derivatives will comprise 2n components of the system

state vector. The matrix D is a diagonal matrix with terms 2_iwi, where (i and wi are the damp-
2

ing ratio and frequency, respectively, for elastic mode i. Matrix A is a diagonal matrix of _0i .

The _I"s consist of mode slopes at the point where a moment is applied, or mode shapes at force

application points. The modal matrices • are dimensioned (n x 3). The right-hand side of the

expression represents modal forces and moments.

LFSP Elastic Motion

(i + D_I + Aq = -OuFp

nM nF

- cI'0Tp + _ _0oiMo! + _ CuoiFo, (3)
i=1 i=1

0

_uFp

_uolFoi
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Nonlinear Model (cont.)

Next consider the payload equations. The payload CM location, point P*, for the de-

formed spacecraft with respect to the inertial reference is given by vector Rnp* in (4) below. The

acceleration of the payload CM is sought. Consider time derivatives of the position vector Rnp.

,, d ,, of the right-hand side of Rnp. This giveswith respect to the inertial frame, that is, take _

the velocity of the payload CM, l_,p.. TaIdng another time derivative, again including terms

due to the relative rotations between coordinate systems, yields the inertial acceleration of the

payload CM, Rnp'. The only external force acting on the payload is the constraint force at the

attachment point. Writing Newton's law gives the nonlinear translational equation of motion,

equation (5).

Lastly, the nonlinear payload rotational equation of motion (about the payload CM) is

given by equation (6). Ip is the payload centroidal inertia matrix for the _*-system, and Mp is

the total moment about the payload CM. Taking appropriate time derivatives and characterizing

the moment Mp acting on the payload results in equation (7).

Nonlinear Payload Equations of Motion

• Payload CM translation:

T
Rnp. = R.o + Rop + _uq + rp.

rnp_-npo = Fp

(4)

(_)

• PaylOad rotation:

d .. LOS
Ip _-_(Wo 4- we -t- Wp) = Mp (6) wa

Tp

I, [_o + _0_ + 9o × ¢0"_+ _p + (_o+ ¢0_) × _, ] (7) 63 \ /_ey

b-f

/- / \

fis _ 02

N

- z- n2 6,

fi,
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Linearized Model

Consider now transformation of all the inertial quantities to 6-system components, lin-

earization of the nonlinear equations, and the introduction of perturbations (to nominal values).

Note that the 6-system is nominally parallel to the inertial frame. Upon linearization, system

variables may be thought of as being comprised of a nominal value plus a perturbation quantity,

for example some variable y = yo +6y. The prefix "5" will be used to denote departure values from

the equilibrium (nominal) state. The nominal attitude of the LFSP is ao = (¢o, 0o, _bo) T = 0, the

nominal angular elastic deformation at the payload attach point is a_ = (4,, 0e, _b_) T = ffT6q =

0, and the nominal gimbal angles are ap = (¢p, 0p, _p)T = (4p, 0p, _p)T. Furthermore, the modal

coordinates used to describe the elastic motion are nominally zero, as are the forces and moments

acting on the system.

The angular velocities of the various coordinate systems may be expressed in general as

w = Wo + 6w. However, the nominal angular rates are zero, and 6w = 65_, with a = (_b, 0, _)T,

the Euler angle vector. The elastic deformation angular rate may be written in terms of the mode

slopes and modal coordinates as follows: 65.e = ff0W6gl•

• "Variable" = "Nominal" + "Perturbation", y = Yo + 6y

• Nominal Values:

- LFSP attitude, ao = (¢o, 0o, ¢o) T = 0

- modal coordinates, q = 0

- gimbal angles, ap = (_p, 0p, _p)T
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Linearized Model (cont.)

The iinearized perturbation equations of motion are given below. The prime notation

denotes the matrix cross-product form. Cep is the transformation from the fi-system to tile _ _

system for the nominal gimbal angles _p = (¢p,0p, ¢p)T. Also, Ipo = C_pIp(_ep is the payl0_ _

centroidal inertia matrix Ip (expressed in the 15*-system) transformed into the 6-system. _
premultiplies the payload inertial angular acceleration. _-

• LFSP translation:

• LFSP rotation:

_P

i----I

*7/%f ?1 F

i=1 i=l

LFSP elastic motion:

561 + DS_I + ASq = -_uSFp -

M nF

(I,0STp + _ ,I,0o_Mo_ + _ ,I,uo_Fo_
i=1 i=I

Payload CM translation:

wtp{_Sano -[R;p -_- (CeTpFp.) , 1(5_io @ [(I )T --(CTprp-)'(I 'T 1_5_

=

=

2

(0)

(10) !

===

(11) .....

• Payload rotation :

Ipo(_io + ff)_561 + Ce'I'p55p) = 5Tp - ((_eTprp-)'SFp (_2)

192
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Linearized Model (cont.)

The final equations of motion can be coupled by substituting for the constraint force

6Fp given by equation (11) into the remaining equations (8, 9, 10, and 12), thus eliminating the

expression for payload translation. The LFSP translational, rotational, and elastic equations,

and the payload rotational equation may be expressed in the form of equation (13). Here A is a

(4 x 4) block matrix of overall dimension (n -F 9) square. Matrices B and C are essentially null

except for n diagonal terms corresponding to the elastic motion. The vector 6r/ is (n -F 9) x 1,

and is given by equation (14).

The expression for matrix A is given by (15). Various terms comprising matrix A are

given by equation (16). The expressions for matrices B and C are given by equation (17). The

matrices D and A were given previously. The mathematical structure of this generic model

includes the internal couplings between payload rigid-body motion and LFSP rigid and elastic

motion.

• Model form:

A6/_ + B&) + C*q = E(_u

• Vector of system variables:

(13)

&l = 6( X, Y, Z; ¢o, 0o, t/'o; ql , . . . , q, ; ¢p, Or,, Cr, ) T (14)

Matrices A, B, and C:

-(too + mr,)Iaxa -mr,l_' mr,'} -mp_'eTp

h __

where:

mpR'.

rn, p'r_ u

rn p_ t

Io - 7?Tpl_Lp l_t

--r%_I'uft'

Ipo -- rnp_'l_'

mr,R-._

Ipo¢ T + mpr"q,

v -v -T
-- mpaopr Cep

-r -T
-rnr,q_ur Cep

(Ipo -,-, - T- mr,r r )Cep

¢ = (e/,r..)' At : (RLp -_- _V) = (e:- • )

(15)

(1G)

B ..._ Dnxn

03x3 I

C .._ AnXr[

03x3

(:7)
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Linearized Model (cont.)

Now consider the right-hand side of equation (13). The vector of control inputs is given

by (18). Matrix E is made up of ng block-columns corresponding to forces 5Fo|, nM block-

columns for moments 5Mol, and a single block-column multiplying the payload torque. The

overall dimensions of matrix E are (n + 9) x (3ny + 3riM + 3), and E as a partitioned matrix is

given by equation (19). Each of the three partitioned matrices comprising E are given in (20). It

is clear that E1 corresponds to external force inputs to the LFSP, E2 to external moment inputs,

and finally Ea corresponds to the payload gimbal torque.

_?

E 1 =

• Vector of control inputs:

5u (SF_z T . T T .STT)T= ,..., (_Fon r , 6Mol, . • . , _MonM ,

s Partitioned form of matrix E:

E = [ Ez(n+_)×(a.r) , E2(n+9)×(3,,M) , Ea(.+9)x3 ]

I3x3 ... I3x3

! I

roz ... ron F

_uol ... _I_uonF

03x3 ... Oaxa

,E2=

03x3 ... 03x3

Ia×a ... I3×3

_0ol ,,. _0OnM

03x3 ,,, Oaxa

,E3--

" 03×a

-Ia×3

- I3×3

(1S)

(19)

(20)
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Decentralized Control Law

The matrix equation (13) may be put into state variable form by allowing xl = 5r/, as

given in (14), and x2 = 5_. Thus one obtains the expressions in (21), which may in turn be

written as equation (22). The matrices A and ]_ are given by equation (23), with each sub-block

of __ and B dimensioned (9 + n) square.

The approach considered herein is a decentralized control strategy using simple propor-

tional plus rate feedback with collocated actuators and sensors for both payload pointing and

LFSP attitude hold. Only applied moments are considered, with LFSP attitude control effected

by moment input 5Mo, and payload pointing accomplished by an applied gimbal torque _Tp.

The sensed LFSP attitude and attitude rate at the CMG location are given by (24). The LFSP

attitude is the sum of the central body rigid angles, and the elastic rotations at the CMG location.

The sensed attitude and attitude rate of the payload are given by (25). The payload attitude is

the sum of the central body rigid angles, the elastic rotation angles at the payload attach point,

and the gimbal angles.

• State-space Form

:K1 _--- X2

x2 = A-l[ Eu- Bx2 - Cxl]

:i: = Ax + t]u

A.=[ 0_A-1C i]_A-1B

• Sensor Outputs

- LFSP attitude and attitudc rate:

5ao. = 5ao + _To5 q

(24)

= +

(21)

(22)

I° ]A-1E
(23)

Payload attitudc and attitude rate:

Sap, = 5ao + q'0TSq + {_Tpbap

(25)
-W •

5tip, = 5_o + q'wbdl + Cap Sap
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Decentralized Control Law (cont.)

The decentralized control laws for LFSP attitude control and payload pointing are given

by equations (26) and (27), respectively. Consider the LFSP attitude control system. If the

gain matrices Kao and Kao are chosen as in (28), the resulting closed-loop system (assuming no

coupling) would have a damping ratio of Po, and a bandwidth of _o rad/sec. Similar expressions

for the payload gimbal controller may be written by replacing A22 with A44 as in equation (29),

giving a closed-loop system with damping ratio pp and bandwidth _p.

• Control Law

- LFSP attitude:

J

! -

/!i__:i

6Mo =-[Kao6ao, + K_,_ho,] (26)

- Payload Gimbal Torquer:

_Tp ---- -[Kao_aps + Kap_aps] (27)

- LFSP Gain Matrices:

K._o = -A2_diag(9_) (28)

Ka° = -A:2diag(2poQo)

- Payload Gain Matrices:

K.. = -h44di_g(gt_) (29)

Ka, =-A44diag(2ppC/p)
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Extension to Multi-Payload Case

The equations of motion for multi-payload configurations may be written in the form of

equation (30). The vector 6r1 is dimensioned (6 + n + 3np) x 1, and is given by (31). The vector

of force and moment inputs 5u is dimensioned (3nF -F 3nM + 3np) X 1, and is written as in (32),

where 6Fol, 6Mol, and 6Ti are external LFSP forces and moments, and payload gimbal torques,

respectively. The coefficient matrices appearing in equation (30) are given in Appendix A.

• matrix form of eqns.:

A6_ + B6_ + C6r/= E6u (30)

• vector of systcm variables:

67/= 6( X, Y, Z; ¢o, 0o, ¢o; qt, ... , q,,; ¢1, 01, ¢1; ... ; ¢,_p, 0np, ¢,, )T (31)

• vector of control inputs:

W . W W . T w .. T w )W (32)6U=6(FoT1, ... , Fon r, Mol, ..., MonM, , • , np
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Simulation Results for an Example Problem

In order to demonstrate the modeling and control methods developed, the dual-keel space

station ISS04 reference configuration with individually pointed payloads was considered. Mass,

inertia, and other parameters for the station are summarized in the table below. Many different

simulation scenarios were considered in exercising the space station model, however only a two

payload study comparing the effects of end'mounting versus CM-mounting will be presented

herein. Attitude control moment input to the Station was provided by a three-axis CMG near

the station CM, while three-axis gimbal torquers acted at each of the two payload attachment

points. In this study, the "worst-case" station rigid-body initial conditions were chosen based on

the most severe anticipated maneuver, re-boosting to higher orbit. Initial modal coordinates were

obtained from the steady-state elastic deformation resulting from the firing of RCS thrustersl The

decentralized controller must drive the station rigid-body angles and payload pointing errors to

zero in the presence of elastic motion.

ISS04 Configuration

Y

"--_z x Payload 2• 3002

RCS _ RCS

193 393

4:oi

• Payload I

3005

e.m. location: (it)

mass: (slug)

inertias w.r.t. CM:

(slug-ft 2)

X = -9.1667

Y = -5.4167

Z = -21.333

m. = 17757.76

I,t = 2.15670 x 10 s

I,_ = 2.15450 x l0 T

I*, = 3.27812 x IO s

I** = 1.20342 x l0 s

I v, = 1.06323 × 106

I,, = 1.19695 × IOs

RCS nodes: - 192, 193, 392, 392

CMG node: 4000

=
=
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Simulation Results (cont.)

The 12 vibrational modes that were actually used in the simulation studies, and their

corresponding modal frequencies, are tabulated below. These 12 modes were chosen because

they represent major truss-structure bending and torsional deformations, as opposed to mere

appendage modes. The elastic modes were assumed to have a damping ratio of 0.005. Payload

data are also summarized below. Given are the payload attachment points, and the masses and

inertias. The first rigid payload was mounted on the lower keel, and the second payload on the

upper keel. For the control systems, the desired closed-loop damping ratios were assumed to be

0.707, and the desired bandwidths were 10.0 rad/sec and 0.1 rad/sec for the two payloads and

the space station, respectively.

Model Data

mode #

7

8

g

20

21

22

36

37

3S

39

40

41

frequency
(rad/sec)

1.37236

1.39753

1.50451

2.01425

2.24925

2.68481

4.09370

4.74973

4.87077

5.86502

6.51971

7.28311

Modes Included in Composite System Model

Payload Data

1SS04 gimbal node

position vectors

from CM (ft)

payload mass
(slug)

payload inertias

(slug-ft 2)

Jzz

I.
I.

/z,

payload 1

3005

z = 8.3333

y = 5.4167

z = 236.223

1002

payload 2

3002

z = 9.1667

y = -60.202
z = -142.708

100.0

1250.0

0.0

0.0

1250.0

0.0

1500.0

1250.0

0.0

0.0

1250.0

0.0

1500.0
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Simulation Results (cont.)

The steady-state (limit cycle) station rigid-body pitch and pitch rate encountered in a

reboost maneuver simulation study were 0.02187 rad (1.25 deg) and 0.0008727 rad/sec (0.05

deg/sec), respectively. The present simulation used these values as initial angular displacements

and velocities about each of the station axes. The initial modal coordinates were calculated by

assuming the space station had reached steady-state conditions after the the firing of the four

RCS thrusters in the x-direction at 75 lb I each. This assumed maneuver serves only to provide a

reasonable initial deformed state. There are no thruster inputs after the start of the simulation.

Tl_e payload gimbal Euler angles and the remaining states are initially zero. The desired gimbal

angles for both payloads are _1,2 = 0.1(1, 1, 1) rad. It was desired to return the station to its

nominal orientation, i.e. the Euler angles (¢o, 0o, _o) - 0, while driving the payload pointing

error to zero, in the presence of nonzero initial conditions and any induced elastic deformation.

Two cases were compared as a result of studying the equations of motion: an end-mounted case

with nonzero distance between the gimbals and the CM, rp. = (0, 0, 6) T ft, and a CM-mounted

case where rp. - (0, 0, 0) T.

• Initial Conditions

- each axis: angle = 1.25 (leg, angular rate = 0.05 deg/sec

- initial elastic deformation due to thruster firing (steady-state)

- initial gimbal angles are all zero

• desired gimbal angles: apl = ap2 = 0.1 (1, 1, 1) rad

station stabilization, simultaneous payload pointing

two cases:

- end-mountcd payload

- CM-mounted payload
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Simulation Results (cont.)

The results given below are for Payload 2 on the upper keel, about the pitch axis (the

x and z motions are analogous, as are the results for the payload on the lower keel). The figure

shows the "base" motion, that is, the sum of the space station rigid-body orientation angles

and the elastic rotation at the payload attachment point, for an end-mounted payload. This

motion must be compensated for by the payload gimbal torquer so that the payload remains on

target. The large rigid-body motion about the y-axis masks the much smaller elastic motion.

The absolute payload pointing error for the end-mounted case is also shown below. The absolute

pointing error is the sum of the base motion and the payload gimbal angles, and should be driven

to zero by the payload controller.

The inset figure compares the absolute pointing error for the CM- and end-mounted cases.

Note that the absolute error for the end-mounted case is significantly more oscillatory than the

CM-mounted case. The end-mounted case has a maximum overshoot of -136.49 arcsec. This

response remains oscillatory with a magnitude on the order of 10 arcsec. The CM-mounted case

yields the desired error response (i.e., perfect second-order system response) about the y-axis

(and x and z axes as well) because the payload rotational motion is completely uncoupled from

the LFSP motion. Here the overshoot is -194.22 arcsec, with the absolute error dropping below
0.001 arcsec in 2.32 sec.

,, Results for Payload 2, angles about pitch axis (i.e.: "50")

arcscc)
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0
-200
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\ ......
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Alternate Dissipative Controller

The decentralized controller described previously was found to give satisfactory perfor-

mance for the space station example. However, coupling between rigid and elastic motion was

not severe, as the masses and inertias of the payloads were small compared to the station values,

and the station represents a nearly rigid spacecraft. Decentralized control does not guarantee

stability for the general case of a highly fle_x_ible LFSP with large inertial payl0ad/LFSP coupling,

as control system interactions can be destabilizing. An alternate method is to utilize a dissi-

pative controller which requires that the mat ri x "A" in the ........second order vector equation (33)

be symmetric. Development of the symmetric form of the equations of motion may be found in

Appendix B. By redefining the system variables "Sq" as in (35), it can be shown that the resulting

"A" matrix is always positive definite. Using the sensor outputs as in (36) and the control law as

in (37), it can be proven that the system.... is asymptotically stable (in the sense that all rotational.__

and elastic motion tends to zero as time goes to infinity). The stability is guaranteed regardlcss

of errors in the system parameters or ignored (unmodeled) elastic motion. Research is presently

in progress on this type of controller.

• Symmetric Form of Equations

AS_ + BS@ + CSv = ESu

where: 03x3

AT=A>O Iax3

cI"oo(, x 3)
B T=B>O E= --_O_x_-

cT--c_0

Oax3

_r]_--" \( T T 5aTo, ... ,Sa o) T6Rno ' _ao, _;qW nTp

O[(6+n) x3.p]

J/'(3np X 3n p)

station attitude (rigid + flexible), at CMG location

transformed gimbal angles, payload 1
y= ETq=

transformed gimba ! angles, payload np

• Control Law

5u=-GpSy-G,.5_'; G_=Gp>0, Grw=Gr w>0

• Closed-loop system asymptotically stable, i.e.:

(Sao, Eq, 5alo, 5a2o,..., Santo) --* 0 as t _

• Research presently in progress
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Concluding Remarks

The problem of dynamic modeling and control of composite systems consisting of a central

flexible space platform and articulated rigid payloads was considered. Generic linearized equations

of motion were derived for a single rigid payload mounted on such a platform using a three-degree-

of-freedom gimballing mechanism. This generic large flexible space platform (LFSP) model was

then extended to the case of multiple independently pointed payloads. A simple decentralized

control law was proposed for platform attitude control and payload pointing. Simulation results

were obtained for an example problem with a single payload, and also with two payloads, attached

to the space station. The results demonstrate the effects of dynamic couplings in the composite

system, and also indicate that the control law used provides satisfactory payload pointing and

platform stabilization for the example problem.

An alternate centralized dissipative control law, which uses a symmetric form of the equa-

tions of motion, was also proposed. This control law guarantees stability regardless of modeling

erros and unmodeled modes.Further research is in progress on that topic. The model obtained

herein is mathematically tractable, and yet has an accurate structure that includes all internal

dynamic couplings. This model offers a suitable tool for analytical and numerical investigation

of the dynamics and control of an important class of missions arising in the Control-Structure

Interaction (CSI) program.

• Developed nonlinear math models for LFSP/articulated payload system

• Extended to multi-payload systems

• Obtained linearized equations

• Simulation results for an example problem

- indicates satisfactory performance for decentralized control law

• Proposed a centralized dissipative control law

- provides robust stability

- development in progress

• Further investigation:

- extension to flexible articulated appendages

- automated "FEM-type" model assembly

- incorporation in CSI optimization problem
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Appendix A: Equations for Multi-Payload Case

The equations for an LFSP supporting multiple payloads will be derived from the

linearized equations (8) through (12). Here a large flexible space platform described in part

by n known elastic modes, is acted on by nF external forces and nM moments exclusive of

the torques required to point the np payloads.

The translational expression is:

nF np

--
i=1 i--1

(A1)

The expression for the rigid-body rotation of the LFSP becomes:

n1_1 n F np np

Io_io = _/_Mol + _ r_oi_Fol- _ R'I$FI- _ _TI

i=1 i=1 i=1 i=1

(A2)

, indicates the (3 x 3) matrix cross-product formAgain the "prime" notation with R_ol and rol
of the vectors Rol = xi(}l -t- yio2 -t- Zi03 and rol = xoi61 + Yoi02 -t- zoi6a. The linearized

equation for the elastic motion of the platform is:

nl_l nF np np

(_ci+ D_(t + A_q = _ (I)0oi_Mol + _ (I)uoi_Fol- _ _ui6Fi- _ (I)0i(_Ti

i=1 i=1 i=1 i=1

(A3)

Next are the rigid payload equations. There will be a translational and a rotational

equation for each of the np payloads. The CM of the i th payload ("point i*") from the inertial

reference for the deformed spacecraft is given by:

T
Rni* -- Rno + Rol + _uiq ÷ rl. (A4)

Differentiating this equation twice results in the inertial acceleration of the i th payload CM

in the form of equation (7). Noting that the only external force acting on the payload is the

constraint force, and linearizing gives:

t -T T -T
_ -- (Ceiri*)'oT]5(imi{ fi.o [Rol + [vui

(A5)
-T i -T ..

- (Celri.) Cei6al} = _Fi

1_¢i is the nominal transformation between the elastic and some i th payload axes. The payload

rotational equation of motion becomes:

-T -" -T
Celri*Iio(_io + _W_i + Cei6ai) = 5Ti - ( )'_Fi (A6)

204



- T ithHere Iio = Cei Ii Cei is the payload inertia matrix transformed into the (3-system. This

inertia matrix multiplies the absolute inertial angular acceleration of the ith payload.

Using summations over the np payloads, equation (AS) can be used to remove _ 5Fi

terms from the LFSP equations (A1, A2, and A3). Furthermore, 5Fi may be removed from

the i th payload rotational equation (A6), yielding np additional equations. This system of

equations may then be assembled in the following matrix form:

AS/_ + BS_ + CSq = ESu (A7)

The vector 5r/is dimensioned (6 + n + 3np) x 1, and is given by:

_Sr1 = 6( X, Y, Z; ¢o, 0o, _bo; ql, ..., qn; ¢1, 01, ¢1;... ; _Snp, On,, g'np )T (AS)

The vector of force and moment inputs 5u is dimensioned (3nF + 3nM + 3nv) X 1, and is
written as follows:

6u = 6( Fol T, ... , FonFT; Mol T, ... , MonMT; T1 T, ... , Tnp T )T (A9)

where 6Foi, 5Mol, and 6Ti are external LFSP forces and moments, and payload gimbal

torques, respectively.

The coefficient matrices A, B, and C, dimensioned (6 + n + 3np) square, and E,

dimensioned (6 + n + 3np) x (3hE + 3rim + 3rip), are given below. Matrix A is essentially a

"mass/inertia" matrix given by:

A

A2[(6+n) X3np]

A4(3np X3np)

(A10)

The blocks comprising matrix A are:

A 1

I np I rtp rip
mo+ E mi Ia×a - E miITUi E rnig_i

i=1 i=1 i=l

ir/p rtp TIp

E miR'ol Io _'_ ' -'-- miRoiR i _ ' -miRoi(_i
i=1 i=1 i=1

TIp np np

E mi¢i - E mi¢iR_ Inxn + E mi¢i¢}i
i=1 i=l i=1

(Alla)

A2 --

-t T
--/721 r I Cel

r/21l_golrl be1

-I T
-- r_ 1(I) 1 rl eel

-i T
• . , --_7_np rnp Cenp

• .. ran, Rronp rlnp CTnp

_mnp (I)np _ln T• . . p Cenp

(A11b)
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n 3 =

- R 1

m =' K' +-- nprnp np _/np np

(A11c)

Where:

A4 =

-I -, T

(Ix - rnlrlrx)Cel ...

03×s • • •

03×3

-, -, T
(Inp -- TT_nprnprnp)Cenp

(A11d)

-, T
-t T )t - I irl = (Ceiri" R1 = (Ro| + rl) _i = (oT|_ riOol) (A12)

=MatriCes B and C are for the most part null except for diagonal blocks multiplying

the n modal coordinates.

written as:

B and C are then modal damping and modal stiffness m.atrices

B = diag[0(6x6), D(,x,), 0(3.,x3.,)] (.413)

C = diag[0(6x6), A(.xn), 0(3.. ×3.p)]

where:

D = [diag(2(iwi)](.xn)

A = [diag@_)](.×.)

The coefficient matrix E is written as:

(A14)

E =

El[(6+ n) x 3nF]

O(3npX3nF)

E2[(6+n) x3nM]

O(3np×3nM)

E3[(6+.) x3np]

I(3.px3np)

(A15)

where the first row of blocks in E are given by:

E 1 =

I3x3 •• • I3x3

I !

rol •.. ron F

CI_uo 1 . . . <I) uon r

, E2:

0ax3 ... Oax3

Iaxa ... Iaxa

_0ol "'" _0onM

, E3--'--

03x3

--I3x3

. . . 03x3

... --I3x3

• . . --_On v

(A16)
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Appendix B: Symmetric-Form Equations for Single and Multi-Payload Cases

A symmetric form of the composite system equations of motion will now be derived

from the linearized asymmetric form. The linearized LFSP translation, rotation, and elastic

equations of motion, as well as the payload rotational equations follow:

(too + rrlp)I3x351:_no -- mpff_t_lo + mp_5_ 1 -mpr-'CepSap-T "" =

nF

ESFoi (B1)
i=l

' "" _[Io , -, .. mpRtop_5_t , -, - T ..rnpRop(_Rno + - _pRopR ]Sao + - mpRopr Cep(_ap

nF nM

= E rt°iSF°i + E 5Mo,- 5Tp
i=1 i=1

(B2)

?]2p_X_u_fino -- ?Tqp(X)ul_'_io + [Inx n + rr_p_X_u(_]_ _ -- mp_ur-'Cep_ap-T ""

nF nM

= E 'I'uoi6Fol + E _'OoiSMol - (I)oc_Tp
i=1 i=1

(B3)

where:

mpr' C_Ii_no + [Ipo -- TYLpr'tl_t]6ao -'F [Ipo_ ff + rnpV_]_t

+ (Ipo - mp_'_')efpS_ip = 5Tp
(B4)

_'=(_Zprp.)' _'=(Wop+_' ) _=(OT--r'_I, T) (B5)

A symmetric form of the equations of motion may now be obtained by removing 5Tp

from equations (B2) and (B3) using (B4), yielding:

mpff_tSIZ_no + (Io + Ipo - + (Ipo,I, T + mpft' )6;:i
nF nM

__+.(Ipo -I-t -T "" t-- mpRr )CepSap = E r°iSF°i + E 8Moi
i=1 i=1

(B6)
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mp¢'T6fino + (¢elpo -- mpcTR')6_io + (Inx, + (I%Ipo(I)T + mp'_T(_)6_i

nF n M

i=1 i=1

(B7)

A matrix form of equations (B1, B6, B7, and B4) may be assembled as follows:

AS_] + BS_ + CSr/= ESu (B8)

Here A is a (4 x 4) block matrix of overall dimension (n + 9) square. Matrices B and C are

essentially null except for n diagonal Germs corresponding to the elastic motion. The vector

5r] of system parameters is (n + 9) x 1, and is given by:

@ 6(anTo; T T T T= ao;q ;apo ) (B9)

The transformed payload angles (_apo ---- cTpSap must appear in the vector of system param-

eters for symmetric equations to result. The vector of control inputs is:

5u = (SroT1 W T 5MTnM, 5TT)T,...,SFon F;SMol,-.., (B o)

The equations for an LFSP supporting multiple payloads will be given as obtained

from tile linearized equations (B1, B6, B7, and B4). Here a large flexible space platform

described in part by n known elastic modes, is acted on by nr external forces and nM moments

exclusive of the torques required to point the nv payloads.

The equations of motion for multi-payload configurations may be written in the fol-

lowing form:

AS/i + BS_ + CSq = ESu (Bll)

The vector 5r/is dimensioned (6 + n + 3nv) x 1, and is given by:

_?_ T T. alto, T )T5(R_o; qT= a o _ • . . _ anpo (BI2)

The vector of force and moment inputs 5u is dimensioned (3nF + 3riM 4- 3nv) X 1, and is
written as follows:

5u = 6( Fol, ... , Fo.r; Mol, ... , MonM; T1, ... , Tnp ) (B13)

where 5Foi, 5Mol, and 5Ti are external LFSP forces and moments, and payload timbal

torques, respectively.
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The coefficient matrices A, B, and C, dimensioned (6 + n + 3np) square, and E,

dimensioned (6 + n + 3np) x (3nF + 3nM + 3np), are given below. Matrix A is essentially a

"mass/inertia" matrix given by:

i = I Al[(6+n) x(6+.)]

A3[3np x(6+n)]

A2[(6+n) X3np]

A4(3np X3np)

(B14)

The blocks comprising matrix A are:

i 1 =

np / np _ np
too+ E mi 13×s - E miRi E miY_i

i=1 i=1 i=l

'rSp 'rl.p _p

E miRi Io - X (Iio - miRIR_) E (Iio + miRl¢i)
i=1 i=1 i=1

np np np

-T -!
E mi(_T -- E (O0ilio- rnie i Ri) Inxn q- _ (I)0ilio_0 T

i=1 i=1 i=1
np

+ _2 mi(_r_'_
i=1

(B15a)

I -rnl_

Az = Ilo -- mlR_r_

-- T-I
Ce,I_o - ml_l rl

• . . --mnprtnp

-- ! --!

• • • Inpo -- mnpRnprnp

... O0nplnpo--m. (_ _"

• , •

ha =

--t --! Inpo_Tnp _1_ mnprlnp_npLrnnpr_p Inpo -- mnprnpRnp

(B15c)

where:

i 4 =

-I T )lr i = (Ceiri*

Ilo -_ -r-- mlrlr z •. • 03x3

03x3 Inpo --! --I-- rr/np rnp rnp

¢i = (vTi -' T-- rl (_ Oi ) (B16)
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Matrices B and C are for the most part null except for diagonal blocks multiplying

the n modal coordinates. B and C are then modal damping and modal stiffness matrices
written as:

B = diag[0(6x6), D(nxn), 0(anpxan,)]

C = diag[0(6x6), A(nxn), 0(3_x3_)]

where:

D = [diag(2(iwi)](n×,O

A = [diag(w_)](nx.)

The coefficient matrix E is written as:

(/317)

(B S)

E
El[(6+n) x3nF]

0(3np X3nF)

E2[(6+n)x3nM]

0(3rip X3nM)

O[(6+n) x3._]

I(3np x3np)

(B19)

where E1 and E2 are given by:

E 1

I3x3

I

rol

_uol

• .. I3×Sr, l
• . , on F

• . . _uon F

, E2 =

-0axa

Isxa

_0ol

• .. 03× 3

• • • I3x3

• , • {I}0onM

(B20)
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